26 research outputs found

    Investigating Wrist-Based Acceleration Summary Measures across Different Sample Rates towards 24-Hour Physical Activity and Sleep Profile Assessment

    Get PDF
    Wrist-worn wearable sensors have attracted considerable research interest because of their potential in providing continuous, longitudinal, non-invasive measurements, leading to insights into Physical Activity (PA), sleep, and circadian variability. Three key practical considerations for research-grade wearables are as follows: (a) choosing an appropriate sample rate, (b) summarizing raw three-dimensional accelerometry data for further processing (accelerometry summary measures), and (c) accurately estimating PA levels and sleep towards understanding participants’ 24-hour profiles. We used the CAPTURE-24 dataset, where 148 participants concurrently wore a wrist-worn three-dimensional accelerometer and a wearable camera over approximately 24 h to obtain minute-by-minute labels: sleep; and sedentary light, moderate, and vigorous PA. We propose a new acceleration summary measure, the Rate of Change Acceleration Movement (ROCAM), and compare its performance against three established approaches summarizing three-dimensional acceleration data towards replicating the minute-by-minute labels. Moreover, we compare findings where the acceleration data was sampled at 10, 25, 50, and 100 Hz. We demonstrate the competitive advantage of ROCAM towards estimating the five labels (80.2% accuracy) and building 24-hour profiles where the sample rate of 10 Hz is fully sufficient. Collectively, these findings provide insights facilitating the deployment of large-scale longitudinal actigraphy data processing towards 24-hour PA and sleep-profile assessment

    Comparing lab-based and telephone-based speech recordings towards Parkinson’s assessment: insights from acoustic analysis

    Get PDF

    Relevance, Redundancy and Complementarity Trade-off (RRCT):a Principled, Generic, Robust Feature Selection Tool

    Get PDF
    We present a new heuristic feature-selection (FS) algorithm that integrates in a principled algorithmic framework the three key FS components: relevance, redundancy, and complementarity. Thus, we call it relevance, redundancy, and complementarity trade-off (RRCT). The association strength between each feature and the response and between feature pairs is quantified via an information theoretic transformation of rank correlation coefficients, and the feature complementarity is quantified using partial correlation coefficients. We empirically benchmark the performance of RRCT against 19 FS algorithms across four synthetic and eight real-world datasets in indicative challenging settings evaluating the following: (1) matching the true feature set and (2) out-of-sample performance in binary and multi-class classification problems when presenting selected features into a random forest. RRCT is very competitive in both tasks, and we tentatively make suggestions on the generalizability and application of the best-performing FS algorithms across settings where they may operate effectively

    Assessing Parkinson’s Disease at Scale Using Telephone-Recorded Speech:Insights from the Parkinson’s Voice Initiative

    Get PDF
    Numerous studies have reported on the high accuracy of using voice tasks for the remote detection and monitoring of Parkinson’s Disease (PD). Most of these studies, however, report findings on a small number of voice recordings, often collected under acoustically controlled conditions, and therefore cannot scale at large without specialized equipment. In this study, we aimed to evaluate the potential of using voice as a population-based PD screening tool in resource-constrained settings. Using the standard telephone network, we processed 11,942 sustained vowel /a/ phonations from a US-English cohort comprising 1078 PD and 5453 control participants. We characterized each phonation using 304 dysphonia measures to quantify a range of vocal impairments. Given that this is a highly unbalanced problem, we used the following strategy: we selected a balanced subset (n = 3000 samples) for training and testing using 10-fold cross-validation (CV), and the remaining (unbalanced held-out dataset, n = 8942) samples for further model validation. Using robust feature selection methods we selected 27 dysphonia measures to present into a radial-basis-function support vector machine and demonstrated differentiation of PD participants from controls with 67.43% sensitivity and 67.25% specificity. These findings could help pave the way forward toward the development of an inexpensive, remote, and reliable diagnostic support tool for PD using voice as a digital biomarker
    corecore